| Name  | Jame |   |       | Class        |  |
|-------|------|---|-------|--------------|--|
| Date  |      |   |       | Ch 12-2 Wkst |  |
| 400 = |      | 4 | CBNIA |              |  |

### 12.2 The Structure of DNA

#### Lesson Objectives

- [ Identify the chemical components of DNA.
- Discuss the experiments leading to the identification of DNA as the molecule that carries the genetic code.
- Describe the steps leading to the development of the double-helix model of DNA.

#### **Lesson Summary**

The Components of DNA DNA is a nucleic acid made up of nucleotides joined into long strands or chains by covalent bonds. Nucleotides may be joined in any order.

- A DNA nucleotide is a unit made of a nitrogenous base, a 5-carbon sugar called deoxyribose, and a phosphate group.
- NA has four kinds of nitrogenous bases: adenine, guanine, cytosine, and thymine.

#### **Solving the Structure of DNA**

- Erwin Chargaff showed that the percentages of adenine and thymine are almost always equal in DNA. The percentages of guanine and cytosine are also almost equal.
- ▶ Rosalind Franklin's X-ray diffraction studies revealed the double-helix structure of DNA.
- ▶ James Watson and Francis Crick built a model that explained the structure of DNA.

The Double-Helix Model The double-helix model explains Chargaff's rule of base pairing and how the two strands of DNA are held together. The model showed the following:

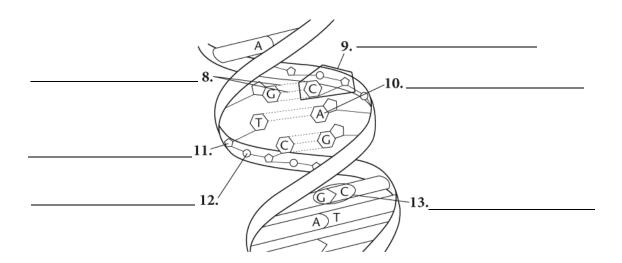
- The two strands in the double helix run in opposite directions, with the nitrogenous bases in the center.
- ► Each strand carries a sequence of nucleotides, arranged almost like the letters in a fourletter alphabet for recording genetic information.
- ▶ Hydrogen bonds hold the strands together. The bonds are easily broken allowing DNA strands to separate.
- ► Hydrogen bonds form only between certain base pairs—adenine with thymine, and cytosine with guanine. This is called **base pairing.**

## The Components of DNA

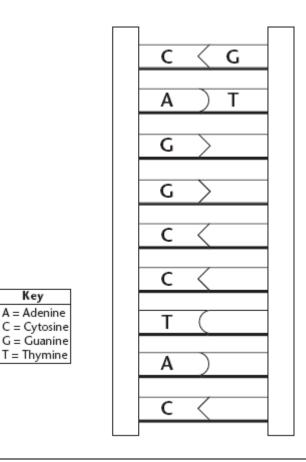
| or | Questions 1–5, complete each statement by writing in             | the correct word or words. |            |
|----|------------------------------------------------------------------|----------------------------|------------|
| 1. | The building blocks of DNA are                                   |                            |            |
| 2. | Nucleotides in DNA are made of three basic component nitrogenous | ts: a sugar called         | _,a, and a |
| 3. | DNA contains four kinds of nitrogenous bases:                    |                            | _, _, and  |
| 4. | In DNA, can be joined in any order.                              |                            |            |
| 5. | The nucleotides in DNA are joined by                             | bonds.                     |            |

# **Solving the Structure of DNA**

**6.** Complete the table to describe each scientist's contribution to solving the structure of DNA.


| Scientist                         | Contribution |
|-----------------------------------|--------------|
| Erwin Chargaff                    |              |
| Rosalind Franklin                 |              |
| James Watson and Francis<br>Crick |              |

7. Complete the table by estimating the percentages of each based on Chargaff's rules.


| DNA sample | Percent of adenine | Percent of thymine | Percent of guanine | Percent of cytosine |
|------------|--------------------|--------------------|--------------------|---------------------|
| 1          | 31.5               |                    |                    |                     |
| 2          |                    | 30                 | 20                 |                     |
| 3          |                    |                    |                    | 17                  |

## The Double-Helix Model

For Questions 8–13, on the lines provided, label the parts of the DNA molecule that correspond to the numbers in the diagram.



The drawing below shows half of a DNA molecule. Fill in the appropriate letters for **14.** the other half. Explain why you drew your sketch the way you did.



# Apply the Big idea

Key

15. Complete this table to show how the structure of the DNA molecule allows it to perform each essential function.

| Function             | Structure of the Molecule |
|----------------------|---------------------------|
| Store information    |                           |
| Copy information     |                           |
| Transmit information |                           |